Plants and L-Systems

Allen Pike

Problem

- Modeling trees is hard
- Modeling forests is harder
- Need mathematical model

Lindenmayer Systems

- Formal grammars
- Prusinkiewicz et. al.
- The Algorithmic Beauty of Plants
- Very extendable

Approach

- Generate models with L-Systems
- Render models with pbrt
- Add randomization and strive for realism

Simple L-Systems

- Turtle drawing
- Fractals

• Algae

f: ff-f-f+f

2D L-Systems

3D L-Systems

3D Hilbert curve.

Moving to plants

- Branching
- Segment thickness
- Color
- Leaves

f: f[f+f]f[-f]

Simple plants

Some 2D plant-like structures from bracketed L-Systems.

Higher plants: flower

Higher plants: tree

Stochastic L-Systems

- Randomness is vital
- Combinatorial explosion
- Multiple productions per symbol

f(20): ff+f f(80): f[+f]

Stochastic flowers

Realism is hard

- Bark texture
- Leaves' position, shape, texture
- Branching gaps

Improved tree model

Difficulties

- Shape plugin format
- Material restrictions
- C++

Data flow

Future

- Parametric L-Systems
- More randomization
- Creation of new L-Systems

